Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra

نویسنده

  • R Álvarez-Nodarse
چکیده

We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra suq(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form. PACS numbers: 02.30.Gp, 02.90.+p

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raising and lowering operators and their factorization for generalized orthogonal polynomials of hypergeometric type on homogeneous and non-homogeneous lattice

We complete the construction of raising and lowering operators, given in a previous work, for the orthogonal polynomials of hypergeometric type on nonhomogeneous lattice, and extend these operators to the generalized orthogonal polynomials, namely, those difference of orthogonal polynomials that satisfy a similar difference equation of hypergeometric type. PACS Numbers: 0210N, 0220S, 0230V, 027...

متن کامل

On Solutions of Holonomic Divided-Difference Equations on Nonuniform Lattices

The main aim of this paper is the development of suitable bases (replacing the power basis x (n ∈ N≥0) which enable the direct series representation of orthogonal polynomial systems on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows to write solutions of arbitrary divided-difference equations in terms...

متن کامل

Raising and lowering operators, factorization and differential/difference operators of hypergeometric type

Starting from Rodrigues formula we present a general construction of raising and lowering operators for orthogonal polynomials of continuous and discrete variable on uniform lattice. In order to have these operators mutually adjoint we introduce orthonormal functions with respect to the scalar product of unit weight. Using the Infeld-Hull factorization method, we generate from the raising and l...

متن کامل

The Hypergeometric Coupon Collection Problem and its Dual

Suppose an urn contains M balls, of different types, which are removed from the urn in a uniform random manner. In the hypergeometric coupon collection problem, we are interested in the set of balls that have been removed at the moment when at least one ball of each type has been removed. In its dual, we are interested in the set of removed balls at the first moment that this set contains all o...

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004